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Least-squares spectral element methods are based on two important and successful
numerical methods: spectral/hp element methods and least-squares finite element
methods. In this respect, least-squares spectral element methods seem very powerful
since they combine the generality of finite element methods with the accuracy of
the spectral methods and also have the theoretical and computational advantages of
the least-squares methods. These features make the proposed method a competitive
candidate for the solution of large-scale problems arising in scientific computing. In
order to demonstrate its competitiveness, the method has been applied to an analytical
problem and the theoretical optimal and suboptimal a priori estimates have been
confirmed for various boundary conditions. Moreover, the exponential convergence
rates, typical for a spectral element discretization, have also been confirmed. The com-
parison with the classical Galerkin spectral element method revealed that the least-
squares spectral element method is as accurate as the Galerkin method for the smooth
model problem. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

Spectral element methods combine the generality of finite element methods with the
higher order accuracy of the solution due to the high-order basis-functions [18]. Conse-
quently, since these methods are often associated with high-order finite element methods,
they are called hp-finite element methods [25]. In comparison with finite element methods,
spectral element methods need fewer degrees of freedom to obtain a prescribed level of
accuracy, but the amount of work that needs to be done per degree of freedom is higher.
Since spectral element methods are a subclass of finite element methods, weak formulations
for the spectral element method may be obtained by Galerkin’s method.
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Recently, the spectral element discretization of the incompressible Navier–Stokes equa-
tions has received much attention [14, 25]. In the weak formulation, one needs to define
approximating functional spaces for the velocity and pressure. However, the velocity and
pressure cannot be approximated independently due to the well known Ladyzhenskaya–
Babuška–Brezzi compatibility condition. This condition can be satisfied by reducing the
polynomial order for the pressure. A well known compatible velocity–pressure combina-
tion is the so-called PN × PN−2 formulation of Bernardi and Maday [4], [26]. The resulting
discrete system is derived from a saddle point problem and is difficult to solve numerically.
To overcome this, the discrete governing equations are often decoupled by using projection
methods or generalized block LU-decompositions.

For many engineering flow problems, the least-squares principles offer several theoret-
ical and computational advantages in the algorithmic design and implementation of the
corresponding finite element methods that are not present in standard Galerkin-based dis-
cretization. In particular, the least-squares formulations for the Stokes equations [15, 22,
23] and Navier–Stokes equations [20, 24] lead to symmetric and positive definite alge-
braic systems and, additionally, circumvent the Ladyzhenskaya–Babuška–Brezzi stability
condition. In the solution strategy of the incompressible Navier–Stokes equations, the least-
squares principle can offer the following significant advantages: (1) one can use equal order
interpolating polynomials for all the variables [6]; (2) the algebraic problems can be solved
with robust iterative methods such as the preconditioned conjugate gradient (PCG) method
[10]; (3) these methods can be implemented with an efficient element-by-element Jacobi–
CG method which does not require the global assembly of the local matrices [9, 21] (an
efficient matrix-free algorithm can be used in cases where storage is extremely limited [16];
(4) parallelization is straightforward by using element-by-element techniques [11]; and
(5) in conjunction with a Newton linearization and a properly implemented continuation
technique with respect to the Reynolds number, the solution technique will only involve
symmetric positive definite linear systems [6]. A disadvantage of the least-squares methods
is that the governing equations must be transformed into first-order systems to mitigate the
continuity requirements between neighbouring finite elements and to keep the condition
number of the resulting discrete system under control [3].

Least-squares spectral element methods (LSQSEM) seem very promising for the solution
of large-scale problems arising in scientific computing, since these methods combine the
generality of finite element methods with the accuracy of the spectral methods and also the
theoretical and computational advantages in the algorithmic design and implementation of
the least-squares methods (see Fig. 1). The first logical step in the development of least-
squares spectral element methods for the incompressible Navier–Stokes equations consists
of the development of efficient and accurate Stokes solvers.

Therefore, the main goals of the paper are threefold. After the discussion of the notations
and definitions (Section 2), the first goal of the paper is treated, which is the discussion
of the least-squares finite element method in the context of an abstract boundary value
problem (Section 3). Secondly, this general formulation is subsequently applied to derive a
least-squares spectral element formulation of the Stokes problem cast in velocity–vorticity–
pressure form (Section 4). It is shown that the rate of convergence depends on the choice
of the boundary condition when h-refinement is used. Finally, the (sub)optimal rate of con-
vergence, predicted by the theory, is checked for a given model problem supplemented
with various boundary conditions (Section 5). Moreover, all the results confirm the expo-
nential rate of convergence when p-refinement is applied. Furthermore, a comparison with
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FIG. 1. The setting of least-squares spectral element methods. Best of all worlds?

the Galerkin spectral element method is also performed and the results discussed. The last
section (Section 6) is devoted to conclusions.

2. NOTATION

In the remainder of this paper, vectors are denoted by boldface letters (e.g., u), and C
denotes a generic positive constant whose meaning and value changes with the context. Let
� denote an open bounded domain in R

n , n = 2 or 3, with Lipschitz boundary �. On this
boundary, n denotes the unit outward normal.

The space L p(�), 1 ≤ p ≤ ∞ represents the space of functions u for which the pth power
of the absolute value is Lebesque integrable over the domain �. The associated norm is
given by

‖u‖L p(�) =
(∫

�

|u|p d�

)1/p

. (1)

The space H 0(�) = L2(�) is a Hilbert space of square integrable functions defined over
the domain �, equipped with the inner product

(u, v)0,� =
∫

�

uv d� (2)

and norm

‖u‖2
L2(�) = ‖u‖2

0,� = (u, u)0,� =
∫

�

u2 d�. (3)

For some m ≥ 1, the Sobolev spaces H m(�) consist of square integrable functions u whose
derivative up to order m are square integrable over the domain. The space H m(�) is denoted
by

H m(�) = {u ∈ L2(�) : Dαu ∈ L2(�), for |α| ≤ m}, (4)
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where Dα represents the multi-index notation. The space H m(�) is equipped with the inner
product

(u, v)m,� =
∑
|α|≤m

(Dαu, Dαv)0,�, (5)

and its associated norm

‖u‖2
m,� = (u, u)m,�. (6)

When there is no ambiguity, the measure � is omitted from the inner product and norm
definitions. When we use the L2(�) space, the notation is further simplified by omitting the
0 subscript from the inner products and norms.

The inner products and norms are denoted for a vector-valued function of n components,
belonging to the product space X = H m1(�) × · · · × H mn (�), by (·,·)x and ‖·‖x, respec-
tively. When all the indices mi are equal, the product space X is denoted by [H m(�)]n

or Hm(�), and (·,·)m,� and ‖·‖m,� are used for the notation of the inner products and
norm.

The space L2
0(�) consists of a square integrable function with zero mean with respect to

the domain �. Finally, the space H m
0 (�) represents the closure of all infinitely differentiable

functions with compact support in �, denoted by D(�) in the H m-norm. Furthermore, we
define the spaces H (div; �) and H (rot; �) by

H(div; �) = {u ∈ L2(�) : ∇ · u ∈ L2(�)} (7)

and

H(rot; �) = {u ∈ L2(�) : ∇ × u ∈ L2(�)}. (8)

The associated norms are

‖u‖H(div;�) = ‖u‖L2(�) + ‖∇ · u‖L2(�) (9)

and

‖u‖H(rot;�) = ‖u‖L2(�) + ‖∇ × u‖L2(�), (10)

respectively. By H0(div; �) and H0(rot; �) we denote the closure of D(�) in the H (div;
�)- and H (rot; �)-norm, respectively. Likewise, we can define the spaces H0(div; �) and
H0(rot; �) by

H0(div; �) = {u ∈ H(div; �) : u · n = 0 on �} (11)

and

H0(rot; �) = {u ∈ H(rot; �) : u × n = 0 on �}. (12)
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3. THE ABSTRACT FORMULATION OF LEAST-SQUARES METHODS

The principle of least-squares methods is first discussed for an abstract elliptic boundary
value problem. An important aspect in theoretical analysis of least-squares formulations is to
establish the equivalence between the residual of the differential equation in a certain norm
and the error with respect to the exact solution in a corresponding norm. This equivalence
is elaborated upon in Section 3.1. From the equivalence between the residual norm and
the corresponding error norm, a priori error estimates can be derived. A general procedure
based on the elliptic theory of Agmon, Douglus, and Nirenberg [1] provides this equivalence.
Through the years, this theory has become known as the ADN theory.

Consider the abstract boundary value problem

L(U ) = F in � (13)

R(U ) = G on �, (14)

in which L is a linear first-order partial differential operator acting on a scalar or vector U of
unknowns, F is a given vector-valued function, R is a trace operator acting on the functions
U , and G represents a given vector-valued function on the boundary. Without any loss of
generality, one can take G = 0. If the governing equations involve second or higher order
derivatives, the scalar equation or system will first be transformed into a first-order system.
The reason for rewriting the system in an equivalent first-order system is to mitigate the
continuity requirements between neighbouring spectral elements and to keep the condition
number of the resulting discrete system under control [3].

3.1. Fully Coercive Least-Squares Methods with Strongly Imposed
Boundary Conditions

It is assumed that the system given by (13)–(14) is well posed and that the operator L is
a continuous mapping from the underlying function space X onto the space Y , i.e., there
exists a positive constant M , independent of U , such that for all U ∈ X the mapping L
satisfies

‖L(U )‖Y ≤ M‖U‖X ∀U ∈ X. (15)

Additionally, we require that the mapping possess a continuous inverse, which can be
expressed by

α‖U‖X ≤ ‖L(U )‖Y ∀U ∈ X, (16)

where α is a positive constant independent of U . The space X consists of functions which
already satisfy the boundary condition (14) with G = 0. Note that by virtue of the estimate
(15) and (16), the norms ‖U‖X and ‖L(U )‖Y are equivalent. The coercivity relation (16)
is of paramount importance for the minimizing principle of least-squares methods. To
appreciate this, assume that the function U − Ue is measured by means of the estimate (16)
where Ue ∈ X represents the “exact” solution of the boundary value problem (13)–(14).
Since L is a linear operator, and since Ue represents the exact solution, the estimate (16)
can be recast into

α‖U − Ue‖X ≤ (‖L(U ) − F‖Y ), ∀U ∈ X. (17)
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This lower bound leads to the very important observation that if the norm of the residual
of (13) approaches zero (‖L(U ) − F‖Y → 0), the approximate solution converges to the
exact solution (‖U − Ue‖X → 0). Consequently, the unique minimizer of the quadratic
least-squares functional,

I(U ) = 1

2

(‖L(U ) − F‖2
Y

)
, ∀U ∈ X, (18)

solves the boundary value problem (13)–(14). The minimization of the quadratic least-
squares functional (18) written as

Seek U ∈ X such that I(U ) ≤ I(V ), ∀V ∈ X (19)

can be obtained by means of the Euler–Lagrange equation

δI(U ) = lim
ε→0

d

dε
I(U + εV ) = 0, ∀V ∈ X (20)

applied to the quadratic least-squares functional (18), which results in the weak formulation

Seek U ∈ X such that B(U, V ) = F(V ), ∀V ∈ X, (21)

where B(U, V ) = (L(U ),L(V )) and F(V ) = (F,L(V )). Since B(·,·) is symmetric, contin-
uous, and coercive in X by relation (16), and since F(·) is continuous, the weak formulation
(21) has a unique solution by virtue of the Lax–Milgram lemma.

The last step in the derivation of the abstract boundary value problem consists of choosing
a suitable finite-dimensional subspace Xh ⊂ X which yields the discrete variational problem

Seek U h ∈ Xh such that B(U h, V h) = F(V h), ∀V h ∈ Xh, (22)

where the parametrized h presents a grid parameter (h is the mesh spacing for finite element
methods or the reciprocal of the polynomial degree of spectral methods). In the present work,
only conforming discretizations are considered.

3.2. Practicality and Optimality of Least-Squares Formulations

From a practical point of view, least-squares formulations which allow the use of C0-
finite or spectral elements are desirable [26a, 26b, 26c], but not necessary [17a]. This can
be accomplished by first transforming the system into a first-order system and subsequently
requiring that only (scaled) L2-norms be used in the quadratic least-squares functional.
Obvious choices for the function spaces X and Y are H 1- and L2-spaces, respectively.
Moreover, if one can prove that these spaces are equivalent, then the system exhibits some
optimal properties. These optimal formulations are called fully H 1-coercive and can be very
attractive.

In a finite element context, these optimal properties are reflected by an optimal rate of
convergence in the H 0- and the H 1-norms. If the exact solution is UeεH s(�) for some
s ≥ 2, then the error estimates (see [27] for the mathematical details)

‖Ue − U h‖r ≤ Chl+1−r‖Ue‖l+1 r = 0, 1 (23)
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hold, where l = min(k, s − 1) and where k represents the approximating order of the C0-
finite elements. The rate of convergence (23) provides the highest possible rate of conver-
gence allowed by the polynomial order k. Note that the optimal rate of convergence depends
on the polynomial degree (k) and the regularity of the exact solution (s). Since this rate of
convergence arises from h-refinement, it is called h-convergence hereafter.

In a spectral element context, the approximating functions are algebraic polynomials of
degree less than or equal to N in each variable. Typical for spectral element discretizations
is that the rate of convergence is only bounded by the smoothness degree of the solution
and not by any other grid parameter [27]. As a consequence, exponential convergence rates
can be obtained for smooth problems if a p-refinement strategy is used. Since this rate
of convergence results from p-refinement, it is called p-convergence hereafter. Moreover,
since the p-convergence rates are exponential and thus already optimal compared to the
finite element discretizations, it makes no sense to speak about optimal p-convergence rates.
One can only check its exponential convergence behaviour.

4. THE LEAST-SQUARES SPECTRAL ELEMENT FORMULATION

OF THE STOKES PROBLEM

4.1. The First-Order Formulation of the Stokes Problem

In the present paper, the two-dimensional Stokes problem will is considered. In order
to obtain a bona fide least-squares formulation, the Stokes problem is first transformed
into a system of first-order partial differential equations by introducing the vorticity as an
auxiliary variable. By using the identity ∇ × ∇ × u = −u + ∇(∇ · u) and by using the
incompressibility constraint ∇ · u = 0, the governing equations subsequently read

∇ p + ν∇ × ω = f in � (24)

ω − ∇ × u = 0 in � (25)

∇ · u = 0 in �, (26)

where, in the particular case of the two-dimensional problem, uT = [u1, u2] represents
the velocity vector, p is the pressure, ω is the vorticity (i.e., the x3-component of the
vorticity vector), fT = [ f1, f2] is the forcing term per unit mass (if applicable), and ν is
the kinematic viscosity. For simplicity it is further assumed that the density equals ρ = 1.
In two dimensions, system (24)–(26) consists of four equations and four unknowns and is
uniformly elliptic of order four. The linear Stokes operator and its right-hand side read

L(U ) = F ⇔




0 0 ν ∂
∂x2

∂
∂x1

0 0 −ν ∂
∂x1

∂
∂x2

∂
∂x2

− ∂
∂x1

1 0

∂
∂x1

+ ∂
∂x2

0 0







u1

u2

ω
p


 =




f1

f2

0
0


 in �. (27)

4.2. The Boundary Conditions

The two-dimensional Stokes problem (24)–(26) must be supplemented with a combi-
nation of the boundary conditions listed in Table I. The boundary conditions involve a
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TABLE I

The Homogeneous Boundary Conditions

of the Stokes Problem

Boundary conditions 2D implementation

Bc 1: Symmetry plane n · u = 0
ω = 0

Bc 2: Inflow n · u = 0
p = 0

Bc 3: Outflow n × u = 0
p = 0

Bc 4: Outflow n × u = 0
ω = 0

Bc 5: Wall, outflow n · u = 0
n × u = 0

Bc 6: Outflow ω = 0
p = 0

combination of the normal velocity component, the tangential velocity component, pres-
sure, and vorticity. Jiang [21] has shown that six boundary conditions can be used for the
Stokes and Navier–Stokes equations.

Effectively, the homogeneous boundary value problem can be translated into the function
spaces defined above. The six boundary conditions are:

• Bc 1: Find (u, ω, p) ∈ H0(div; �) ∩ H (rot; �) × H 1
0 (�) × H 1(�) ∩ L2

0(�);
• Bc 2: Find (u, ω, p) ∈ H0(div; �) ∩ H (rot; �) × H 1(�) × H 1

0 (�);
• Bc 3: Find (u, ω, p) ∈ H (div; �) ∩ H0(rot; �) × H 1(�) × H 1

0 (�);
• Bc 4: Find (u, ω, p) ∈ H (div; �) ∩ H0(rot; �) × H 1

0 (�) × H 1(�) ∩ L2
0(�);

• Bc 5: Find (u, ω, p) ∈ H1
0(�) × H 1(�) × H 1(�) ∩ L2

0(�); and
• Bc 6: Find (u, ω, p) ∈ H1(�) × H 1

0 (�) × H 1
0 (�).

So instead of proving coercivity with respect to certain boundary conditions we can also
consider the problem of obtaining coercivity with respect to the above function spaces, which
already contain the prescribed homogeneous boundary conditions. This idea is elaborated
upon in the next section.

4.3. A Priori Estimates and Least-Squares Functionals

The role of the boundary conditions in the least-squares formulation of the Stokes problem
cast in the velocity–pressure–vorticity formulation reaches further than one would imagine
at first glance. In order to obtain the a priori error estimates for the Stokes problem,
the ADN [1] theory and in particular the complementing condition of the ADN theory are
of paramount importance. The complementing condition is an algebraic condition on the
principal parts of the differential equations and the boundary operators which guarantees the
compatibility of a particular set of boundary conditions with the given system of differential
equations. This condition is necessary and sufficient for the coercivity estimates to be
valid (see [1, 5] for further details). Analyses based on the ADN theory revealed that the
coercivity estimates for the Stokes operator (27) are not unique and depend on the choice
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of the boundary conditions! Consequently, the rate of h-convergence of the least-squares
formulation depends on the choice of the boundary conditions.

Jiang [21] has shown that for the boundary conditions Bc 1 to Bc 4 and Bc 6 of Table I
the following coercivity relation of the Stokes differential operator holds:

‖u‖1 + ‖ω‖1 + ‖p‖1 ≤ C(‖∇ p + ν∇ × ω‖0 + ‖∇ · u‖0 + ‖ω − ∇ × u‖0). (28)

Recently, Bochev and Gunzburger [5] pointed out that the relation (28) does not hold when
using the velocity boundary conditions (Bc 5). Instead, one should use

‖u‖2 + ‖ω‖1 + ‖p‖1 ≤ C(‖∇ p + ν∇ × ω‖0 + ‖∇ · u‖1 + ‖ω − ∇ × u‖1). (29)

In response to this observation, Jiang [21] argued that when the residuals of the Stokes
equations supplemented with the velocity boundary conditions are measured with (non-
scaled) H 0-norms, the variables must be measured in less desirable norms, and that the
corresponding bounded below condition is now given by

‖u‖1 + ‖ω‖0 + ‖p‖0 ≤ C(‖∇ p + ν∇ × ω‖0 + ‖∇ · u‖0 + ‖ω − ∇ × u‖0). (30)

Relations (28) and (30) yield the quadratic least-squares functional

I(U ) = 1

2

(‖∇ p + ν∇ × ω − f‖2
0 + ‖∇ · u‖2

0 + ‖ω − ∇ × u‖2
0

)
, (31)

which upon minimization, yields a weak formulation which can be discretized with standard
finite or spectral elements. This results from the fact that, since the norms in (31) must be
square integrable in the domain, one can use C0-finite or spectral elements. The quadratic
least-squares functional resulting from relation (29) is given by

I(U ) = 1

2

(‖∇ p + ν∇ × ω − f‖2
0 + ‖∇ · u‖2

1 + ‖ω − ∇ × u‖2
1

)
. (32)

Unfortunately, the appearance of the H 1-norms in (32) makes this functional not very
practical since it would lead to the use of impractical C1-finite or spectral elements for
the velocity unknowns which require continuous first-order derivatives across interelement
boundaries. The pressure and vorticity, in this formulation, can still be treated by standard
C0 elements. Instead, one can (based on scaling arguments between the discrete H 0- and
H 1-norms [5, 13, 27]) minimize the weighted functional

I(U ) = 1

2

(‖∇ p + ν∇ × ω − f‖2
0 + h−2‖∇ · u‖2

0 + h−2‖ω − ∇ × u‖2
0

)
, (33)

which leads to a weak formulation where again standard finite and spectral elements can
be used. The parameter h > 0 represents a characteristic length of the grid which decreases
when the size of the spectral element decreases or when the polynomial order increases. As
observed in [6], the functionals (32) and (33) are only equivalent if the functions u, ω, and p
are restricted to finite-dimensional spaces. However, the functional (33) is no longer coercive
in the usual sense. It was shown in [6] that in order to obtain an optimal accurate h-method,
one needs to approximate the pressure and vorticity with an approximating polynomial of
one order less than the order of the velocity-approximating polynomial. Consequently, a
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TABLE II

The Various Least-Squares Formulations for the Stokes Problem Resulting from the

General Least-Squares Functional I(U) = 1
2 (ha‖∇p + ν∇ × ω − f‖2

0 + hb‖∇ · u‖2
0 +

hc‖ω − ∇ × u‖2
0)

Values of coefficients Optimality of
Boundary conditions a, b, and c Norms of variables formulation

1. Symmetry plane a = 0, b = 0, c = 0 ‖u‖1, ‖ω‖1, ‖p‖1 Optimal
2. Inflow a = 0, b = 0, c = 0 ‖u‖1, ‖ω‖1, ‖p‖1 Optimal
3. Outflow a = 0, b = 0, c = 0 ‖u‖1, ‖ω‖1, ‖p‖1 Optimal
4. Outflow a = 0, b = 0, c = 0 ‖u‖1, ‖ω‖1, ‖p‖1 Optimal

5a. Wall, outflow a = 0, b = 0, c = 0 ‖u‖1, ‖ω‖0, ‖p‖0 Suboptimal
5b. a = 0, b = −2, c = −2 ‖u‖2, ‖ω‖1, ‖p‖1 Suboptimal
6. Outflow a = 0, b = 0, c = 0 ‖u‖1, ‖ω‖1, ‖p‖1 Optimal

suboptimal rate of h-convergence for the pressure and vorticity will be obtained when an
equal-order interpolation is used for all the dependent variables. The velocity components
should still converge at an optimal rate.

Table II summarizes the relation between the boundary conditions and the associated
least-squares formulation. Column one lists the type of boundary condition; in column two
the power of the scaling parameters is summarized; column three and four respectively
indicate the norms in which the variables are measured and the optimality of the least-
squares h-convergence rates for the pressure and vorticity when an equal-order interpolation
for all variables is used. All formulations are cast into the general quadratic least-squares
functional

I(U ) = 1

2

(
ha‖∇ p + ν∇ × ω − f‖2

0 + hb‖∇ · u‖2
0 + hc‖ω − ∇ × u‖2

0

)
, (34)

which upon minimization lead to the bilinear form

B(U, V ) =
∫

�

[L(U )]T W [L(V )] d� (35)

and the linear functional

F(V ) =
∫

�

[F]T W [L(V )] d�, (36)

respectively. In (35) and (36), [ ]T represents the transpose and W is a diagonal matrix with
positive diagonal elements [ha, hb, hc].

Inspection of Table II reveals that boundary conditions 1 to 4 and boundary condition
6 yield an optimal rate of h-convergence in all variables if an equal-order interpolant is used
for all variables. This optimal property results from the fully H 1-coercive formulation.
However, formulations 5a and 5b are not fully H 1-coercive. Consequently, when an equal-
order approximation is used, the velocity component will still have an optimal rate of
h-convergence, whereas the vorticity and pressure will have a suboptimal rate.
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4.4. Implementational Aspects

Most spectral element methods are based on the Gauss–Lobatto–Legendre (GLL) nu-
merical integration for reasons of efficiency [25]. The GLL integration of a function f (ξ)

on the interval ξ ∈ [−1, 1] is given by

∫ 1

−1
f dξ ≈

N∑
i=0

f (ξi )wi , (37)

where ξi and wi represent the position and weight of the collocation point i of the one-
dimensional Gauss–Lobatto–Legendre grid, respectively. The GLL collocation points are
the roots of (ξ 2 − 1) d L N (ξ)

dξ
, where L N (ξ) is the Legendre function of order N . Due to

the choice of the numerical GLL-integration, the orthogonal discrete basis functions for the
unknowns are readily available by means of the Lagrangian interpolants hi (ξ), with 0 ≤
i ≤ N , defined on the interval [−1, 1] by

hi (ξ) =
(ξ 2 − 1) d L N (ξ)

dξ

N (N + 1)L N (ξi )(ξ − ξi )
. (38)

Consequently, the approximation of a function f (ξ) on the interval [−1, 1] by using the
Lagrangian interpolants reads

f̃ (ξ) =
N∑

i=0

f (ξi )hi (ξ), (39)

where f (ξi ) is the value of the function f (ξ), evaluated at the collocation point ξi ; the
function hi (ξ) represents the corresponding Lagrangian interpolant.

In multiple dimensions, the integration and basis functions can be obtained by means
of tensor products. Since the numerical integration is only defined on the domain [−1, 1]d

(where d represents the spatial dimension), one needs a mapping from a general element (a
quadrilateral in 2D) onto the master or parent element. The order of the spectral elements
(N ) refers to the order of the Legendre function which is used for the GLL integration and
Lagrangian interpolants.

In the present paper, the domain has been discretized with a mesh of nonoverlapping
conforming quadrilateral spectral elements of order N which are used to solve the two-
dimensional Stokes problem (24)–(26). Each quadrilateral spectral element is mapped on
the parent spectral element �e by using an isoparametric mapping [19] to the bi-unit square
[−1, 1] × [−1, 1] with local coordinates ξ1 and ξ2. In the parent element all variables,
located at the GLL collocation points, can be approximated by the same Lagrangian in-
terpolant, since the least-squares formulation is not constrained by the Ladyzhenskaya–
Babuška–Brezzi compatibility condition. For the two-dimensional Stokes problem, the dis-
crete spectral element approximation yields

Uh =
N∑

q=0

N∑
p=0

h p(ξ1)hq(ξ2)




û1

û2

ω̂

p̂




p,q

, (40)
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where h p(ξ1) with 0 ≤ p ≤ N and hq(ξ2) with 0 ≤ q ≤ N represent the Lagrange inter-
polants in the ξ1 and ξ2 direction, respectively. The vector [û1, û2, ω̂, p̂]T in (40) is the
vector of unknown coefficients, evaluated at the collocation point. The global assembling
of the element matrices

Ke =
∫
�e

[L(ψ0,0), . . . ,L(ψN ,N )]T W [L(ψ0,0), . . . ,L(ψN ,N )] d�, (41)

where ψp,q = h p(ξ1)hq(ξ2) with the element right-hand sides

Fe =
∫
�e

[L(ψ0,0), . . . ,L(ψN ,N )]T W F d�, (42)

yields the global assembled system of linear algebraic equations

KU = F, (43)

where U now represents the global vector of unknown nodal values. The matrix W represents
a diagonal matrix as defined in Section 4.3. Note that since the matrix K is symmetric positive
definite, robust preconditioned conjugate gradient iterative methods can be employed and
that no extra added weighting (e.g., tuning) parameters have to be introduced in the least-
squares spectral element formulation.

5. NUMERICAL RESULTS

The purpose of the numerical simulations is threefold. First of all, we want to establish
the optimal h-convergence rates for least-squares spectral element methods. Secondly, we
want to check the exponential p-convergence rates of these methods. Finally, we want
to compare the accuracy and the convergence rates of the least-squares spectral element
method with those obtained through the Galerkin spectral element method. To this end, the
h- and p-convergence rates are calculated for a model problem supplemented with inflow
and velocity boundary conditions. One of the tricky properties of least-squares methods is
that they can solve overdetermined problems. As an example, the model problem is solved
with overdetermined but consistent boundary conditions. Also for this latter test case, the h-
and p-convergence rates are investigated. All simulations are obtained by using equal-order
interpolation polynomials for implementational reasons (ease of programming).

5.1. The Model Problem

The h- and p-rate of convergence of the least-squares spectral element formulation of the
velocity–vorticity–pressure formulation of the Stokes problem is demonstrated by means of
the model problem of Gerritsma and Phillips [17] with ν = 1. This model problem involves
an exact solution of the Stokes problem where the velocity components and pressure are
defined on the unit square [0, 1] × [0, 1] by

U (x, y) = −sin(2πx)cos(2πy) (44)

V (x, y) = cos(2πx)sin(2πy) (45)
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and

P(x, y) = sin(πx)sin(πy), (46)

where U (x, y) and V (x, y) represent the velocity in the x and y direction, respectively; the
vorticity is derived from the velocity components. This exact solution satisfies the Stokes
equations if the following forcing term is used:

f =
(

π cos(πx) sin(πy) − 8π2 sin(2πx) cos(2πy)

π sin(πx) cos(πy) + 8π2 cos(2πx) sin(2πy)

)
. (47)

5.2. The Test Cases

As a first test case, the model Stokes problem is solved with the homogeneous boundary
condition 2 (Bc 2) of Table I. For this test case, the normal components of the velocity and
the pressure are prescribed on the boundary (p = 0, n · u = 0). For the second test case, the
two inhomogeneous velocity components, given by Eqs. (44) and (45), are prescribed on
the boundary. The pressure constant is set to zero in the point (0, 0). The model problem
supplemented with the inhomogeneous velocity boundary condition is solved in least-
squares sense for formulations 5a and 5b. Recall that the difference between the formulations
is the scaling parameter h2 which is defined in the present paper as the area of the spectral
element divided by N 2. For the last test case, an overdetermined but consistent problem
is solved with a boundary where all the variables are prescribed. The interest for this test
case is to obtain insight into the convergence behaviour for overdetermined least-squares
formulations since a similar boundary condition strategy may facilitate the extension of
the present least-squares spectral element methods to discontinuous least-squares spectral
element methods [17a] and/or methods with hp-adaptive strategies.

5.3. The h-Convergence Results

Six different grids have been used to check the optimal properties of the h-convergence
rates. As can be observed in Table III, the polynomial order of all the spectral elements
equals 4, and the number of spectral elements was varied from 9 to 64. Three grids that
were used in the simulation are shown in Fig. 2. For each grid of Table III, the numerical
solutions obtained for each test case are compared with the exact solution. To this end, the

TABLE III

The Various Grids Used for the Investigation

of the h-Convergence Rates

Spectral elements Approximating order

9 4
16 4
25 4
36 4
49 4
64 4
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FIG. 2. Three examples of the numerical grids used for the calculation of the h-convergence rates (left: a
GLL grid with 9 spectral elements of order 4; center: a GLL grid with 36 spectral elements of order 4; right: a
GLL grid with 64 spectral elements of order 4).

error between the exact and the computed solution is obtained by means of H 0 and H 1

norms. We refer to these norms as the error norms. In the present paper, all the norms are
calculated by using the numerical Gauss–Legendre–Lobatto integration of order 20. The
h-convergence rates of the H 0 and H 1 error norms are displayed as a function of the grid
parameter h in Figs. 3 and 4, respectively.

It can be observed in Figs. 3a and 4a that the U -velocity components converge at ap-
proximately the same optimal rate for all the test cases. The values of the H 0 and H 1 error
norms of the nonweighted least-squares formulation (formulation 5a) seem a little larger
on the coarser grids but recover the same values as the other test cases on the finest grids.

FIG. 3. The h-convergence rate of the H 0 error norms for the different test cases (Bc 2: -; Overdet. Bc: - -;
Bc 5a:-·-; and Bc 5b:-··-).
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FIG. 4. The h-convergence rate of the H 1 error norms for the various test cases (Bc 2: -; Overdet. Bc:- -; Bc
5a:-·-; and Bc 5b:-··-).

Consequently, the rate of h-convergence of formulation 5a will be slightly higher than it
is for the other test cases. All the convergence rates of the H 0 and H 1 error norms are
summarized in Table IV. In this table one can observe that formulation 5a converges at a
higher than optimal rate. All the other formulations converge at the optimal rate. Further
scrutiny of the data revealed the scatter in the data of formulation 5a. This might partly
explain the overprediction of the rate of convergence caused by the linear regression used.
Comparing formulation 5a (nonweighted formulation) and 5b (weighted formulation) indi-
cates that weighting has a positive effect on the smoothness of the h-convergence rates. The
results further indicate that the use of the overdetermined but consistent boundary condition
yields an optimal convergence behaviour for the U -velocity component. Since the result
of the V -velocity component yields a convergence rate similar to that of the U -velocity
component, it is not shown in Figs. 3 and 4.

TABLE IV

Summary of the h-Convergence Rates in the H0 and H1 Error Norms for the Model Problem

The H 0 error norms The H 1 error norms

Function Bc 2 OD Bc 5a Bc 5b Bc 2 OD Bc 5a Bc 5b

U 5.02 5.02 5.09 5.01 4.00 4.00 4.04 4.00
V 5.02 5.02 5.09 5.01 4.00 4.00 4.04 4.00
ω 4.99 4.99 6.10 4.42 3.99 3.99 4.60 3.52
P 5.86 5.86 6.81 5.69 4.91 4.91 5.72 4.67
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In Figs. 3b and 4b, the h-convergence rate of the vorticity can be found. It can be ob-
served in these figures that the inflow boundary condition and the overdetermined bound-
ary condition yield optimal h-convergence rates in the H 0 and H 1 error norms, respec-
tively. Since the error norms of these formulations are on top of each other, one can
only see the full line corresponding to the inflow boundary condition. As predicted by
the error estimates, formulation 5b reveals a suboptimal h-convergence rate in both the
H 0 and H 1 error norms. The h-convergence behaviour of formulation 5a (nonweighted
formulation) is unexpected since the H 0 and H 1 error norms converge at a rate which
is higher than the optimal h-convergence rate! Investigation of Figs. 3b and 4b reveals
that the overprediction of the h-convergence rate cannot result only from the linear re-
gression used to calculate the convergence rates. We have never seen such convergence
behaviour (at least not to this extent) and have no explanation for it. It seems that for
formulation 5a, the behaviour of the vorticity resembles the behaviour of the U -velocity
component. Although the rate of h convergence of formulation 5a is better than optimal,
the absolute values of the H 0 and H 1 error norms are still larger than those of the optimal
formulations.

Figures 3c and 4c display the h-convergence rates in the H 0 and H 1 error norms of the
pressure. As can be observed in Figs. 3c and 4c and in Table IV, all rates are better than
the optimal rate of convergence Comparing the results obtained with the inflow boundary
condition to those obtained with the overdetermined boundary condition reveals that the
convergence rate and the absolute values of the H 0 and H 1 error norms are equal (e.g.,
the lines fall on top of each other). The rate of convergence and the accuracy of formu-
lation 5b are suboptimal compared to the previous two cases. For these three cases, the
difference between the h-convergence rate of the H 0 and H 1 error norms is almost 1 (as it
should be)!

From these results it can be concluded that the velocity components are most accurate and
that the H 0 and H 1 error norms converge at an optimal rate for all the boundary conditions
tested. Indeed, the overdetermined boundary condition also yields optimal accurate results!
Moreover, the accuracy of the pressure variable is less than one order worse than the accuracy
of the velocity components and converges at a rate which is higher than the optimal h-
convergence rate. Further experiments with least-squares spectral element methods will,
we hope, clarify whether this phenomenon is model problem dependent or a general trend
for higher order methods. The vorticity values are the least accurate. In general, the H 0 and
H 1 error norms are one order of magnitude higher than the H 0 and H 1 error norms for
the velocity and converge according to the error estimates. The convergence behaviour of
formulation 5a is very unpredictable and requires fine meshes to obtain accurate results for
the pressure and vorticity.

5.4. The p-Convergence Results

The recent interest in and demand for more accurate and at the same time geometrical,
flexible methods resulted in the development of spectral element methods [25]. As stated
above, an important aspect of spectral element methods is the exponential rate of con-
vergence obtainable when p-refinement is applied. In order to investigate the exponential
p-convergence rate of the least-square formulations, four p-grids have been used to sim-
ulate the model problem for all the test cases. Each grid contains four spectral elements.
The order of the approximating polynomial varied from 4 to 10 in steps of 2 and was the
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FIG. 5. Three examples of the numerical grids used for the calculations (left: a GLL grid with four spectral
elements of order 4; center: a GLL grid with four spectral elements of order 8; right: a GLL grid with four spectral
elements of order 10).

same in all the variables for the simulations. In Fig. 5, three grids that were used in the
simulation are shown. The p-convergence rates of the H 0 and H 1 error norms are displayed
as functions of the polynomial order N in Figs. 6 and 7, respectively.

It can clearly be observed in Fig. 6 that the H 0 error norms of all the variables converge
at an exponential rate. The result of the V -velocity component is not shown in figures since
it yields a convergence rate similar to that yielded by the U -velocity component. Figures 6a
and 7a reveal that the U -velocity components of all test cases converge at approximately the
same p-convergence rate (e.g., all the lines fall on top of each other). The H 0 and H 1 error

FIG. 6. The p-convergence rate of the H 0 error norms for the various test cases (Bc 2: -; Overdet. Bc: - -;
Bc 5a: -·-; and Bc 5b: -··-).
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FIG. 7. The p-convergence rate of the H 1 error norms for the various test cases (Bc 2: -; Overdet. Bc: - -;
Bc 5a: -·-; and Bc 5b: -··-).

norms of the vorticity and pressure show that all the test cases converge at approximately the
same rate. Comparison of the H 0 error norms of formulation 5a (nonweighted formulation)
and 5b (weighted formulation) with those of the other test cases indicates that weighting
has a positive effect on the smoothness of the p-convergence rates but leads to slightly less
accurate results. Notice that both test cases with velocity boundary conditions give rise to
slightly less accurate results for the vorticity and pressure variable. The H 1 error norms of
the vorticity and pressure show more scatter in the data.

From these results one can safely conclude that the H 0 and H 1 error norms of all variables
demonstrate spectral accuracy. A careful inspection of the p-convergence rates further
revealed that prescribing the pressure on the boundary (the fully H 1-coercive formulations)
leads to a pressure accuracy which is half an order of magnitude better than the accuracy
of the velocity components for larger values of N (N ≥ 6). When the pressure was not
prescribed on the boundary, the velocity was one order of magnitude more accurate than
the pressure and vorticity. All the results indicate that the test case with the overdetermined
but consistent boundary conditions can also be considered a fully H 1-coercive formulation
since it always displayed the best results (e.g., the results obtained with the overdetermined
boundary condition always lie on top of the results obtained with the inflow boundary
condition). Moreover, since we did not experience a dramatic loss of accuracy for the
non fully H 1-coercive formulations, we believe that the development of spectral element
methods based on least-squares formulations is worth continuing in the future. An example
of the difference in accuracy between h-refinement and p-refinement is shown in Fig. 8.
The results are obtained for the inflow boundary condition and are typical for all the test
cases and show the advantage of the use of higher order methods for smooth problems.
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FIG. 8. The h-versus p-convergence rates of the H 0 error norms obtained with the homogeneous inflow
boundary condition (h-convergence rate: -; p-convergence rate: - -).

5.5. Comparison with the Galerkin Spectral Element Method

In this section a comparison is made with the Galerkin spectral element method in terms
of the h- and p-convergence rates of the H 0 error norms. The smooth model problem
supplemented with the velocity boundary conditions is therefore solved with the commonly
used Galerkin spectral element method [14, 25]. To this end, the PN × PN−2 formulation
of Bernardi and Maday [4], [26] is used to obtain the discretized Stokes equations.

In what follows, the h- and p-convergence rates of the H 0 error norms obtained with the
Galerkin formulation will be compared with the convergence rates obtained with the non-
weighted (5a) and weighted (5b) least-squares formulation since these three formulations
can be used in conjunction with the velocity boundary conditions. The number of spectral
elements (K ) and the polynomial order (N ) that have been used for the Galerkin simulation
are the same as those used for the least-squares formulation. The h-convergence rates of the
H 0 error norms are displayed as a function of the grid parameter h in Figs. 9a to 9c. The
p-convergence rates of the H 0 error norms are shown as a function of the polynomial order
N in Figs. 10a to 10c, respectively. Since the result of the V -velocity component yields a
similar convergence rate as does that of the U -velocity component, it is not discussed.

It can be observed in Fig. 9a that the convergence rate of the U -velocity component is
approximately the same for the least-squares and Galerkin formulations. Comparing the
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FIG. 9. The h-convergence rate of the H 0 error norms for the least-squares formulation and Galerkin formu-
lation. (Galerkin formulation: -, least-squares formulation 5a: -·-; and least-squares formulation 5b: -··-).

h-convergence rate of the vorticity (Fig. 9b) reveals that the nonweighted least-squares
formulation (5a) has approximately the same order of accuracy as the Galerkin formulation
at high values of h but has a higher h-convergence rate. This least-squares formulation re-
covers, at small values of h, the same accuracy as the weighted least-squares formula-
tion (5b) and is roughly one order of magnitude more accurate than the Galerkin spectral
element formulation. Comparing least-squares formulation (5b) with the Galerkin formu-
lation reveals that both formulations have approximately the same convergence rate, but
this least-squares formulation is, over the whole range of h values, one order of magnitude
more accurate than the Galerkin formulation. The difference between the least-squares and
the Galerkin formulation is due to the fact that the vorticity needs to be derived from the
velocity components in the Galerkin formulation. Comparing the h-convergence rate of
the U -velocity component and the vorticity of the Galerkin formulation indicates that one
loses approximately one and a half orders of accuracy by calculating the vorticity from
the velocity components. In Fig. 9c, the h-convergence rates of the pressure are shown.
This figure further reveals that the weighted least-squares formulation (5b) is more accurate
than the Galerkin formulation, in particular at smaller values of the grid parameter h. The
nonweighted least-squares formulation is only more accurate for small values of h.

The p-convergence rate for the U -velocity component (see Fig. 10a) shows similar
convergence behaviour of the least-square method and the Galerkin method. We have no
explanation for the surprising result of the Galerkin method at N = 10. In Fig. 10b, the
p-convergence rates of the vorticity are shown. From this figure, it can clearly be observed
that both least-squares formulations (5a and 5b) remain roughly one order of magnitude
more accurate than the Galerkin formulation. On the contrary, the accuracy of the pressure
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FIG. 10. The p-convergence rate of the H 0 error norms for the least-squares formulation and the Galerkin
formulation. (Galerkin formulation: -; least-squares formulation 5a: - · -; and least-squares formulation 5b: -··-).

variable (see Fig. 10c) seems approximately one order of magnitude more accurate when
the Galerkin formulation is used instead of the least-squares formulation. This superior
behaviour is lost at N = 10. At this polynomial order, the Galerkin formulation becomes
less accurate than the least-squares formulations. This is probably due to the fact that the
velocity was also substantially less accurate at this polynomial order (see Fig. 10a).

The results of the present smooth model problem seem to indicate that the least-squares
spectral element method and the Galerkin spectral element method yield comparable results
regarding the accuracy of the velocity components. Moreover, the accuracy of the vorticity
variable obtained with least-squares spectral element methods is one order of magnitude
higher than the results obtained with the Galerkin method. When the pressure variable is
considered, the Galerkin method seems more accurate, at least when p-refinement is used.
On the whole, least-squares spectral element methods seem to provide the same order of ac-
curacy as the more commonly used Galerkin spectral element methods for this smooth model
problem.

The main advantages of using the least-squares method instead of the Galerkin method to
solve the incompressible Stokes and Navier–Stokes equations is that least-squares methods
lead to symmetric systems regardless of the underlying partial differential equations (also
when a Newton linearization would have been used). It has been shown in [6] that the
incompressible Stokes and Navier–Stokes equations also yield postive definite algebraic
systems and circumvent the LBB stability condition. Moreover, these systems can be solved
with robust iterative methods such as the preconditioned conjugate gradient method and
additive and multiplicative multigrid methods [2, 7, 8]. In contrast, the Galerkin method
yields a saddle point problem which is more difficult to solve numerically. To overcome
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this drawback, the discrete governing equations are often uncoupled by using projection
methods or generalized block LU-decompositions.

The application of the least-squares method to some more demanding problems such as
the cylinder problem [12] revealed that the major disadvantage of the least-squares method
is the mass conservation property. Numerical experience (not discussed here) revealed that
the present least-squares spectral element method performs much better than the least-
squares finite element method used in [12] and that a suitable weighting of the continuity
equation (see [15]) in the least-squares functional almost restores mass conservation. A way
to restore the mass conservation in the least-squares spectral element formulation of the
Stokes problem will be discussed in forthcoming work [26a, 26c].

6. CONCLUSIONS

In the present paper, a least-squares spectral element method for the Stokes equations
has been discussed. Least-squares spectral element methods are based on two important
and successful numerical methods which are spectral/hp element methods and least-squares
finite element methods. In this respect, least-squares spectral element methods seem the best
of all worlds since they combine the generality of finite element methods with the accuracy
of the spectral methods. There are also theoretical and computational advantages in the
algorithmic design and implementation of the least-squares methods. Most notably, least-
squares methods lead to symmetric and positive definite algebraic systems which circumvent
the Ladyzhenskaya–Babuška–Brezzi stability condition and consequently allow the use of
equal-order interpolation polynomials for all the variables.

These three feature—high accuracy, equal-order interpolation, and systems which are
easy to solve—make the proposed method a competitive candidate for the solution of large-
scale problems arising in scientific computing. In order to demonstrate its competitiveness,
the method has been applied to an analytical problem and the theoretical optimal and subopti-
mal a priori estimates have been confirmed for various boundary conditions or, equivalently,
various approximating function spaces. Most notably, the use of wall boundary conditions
(boundary conditions 5), i.e., the prescription of the normal and tangential velocity compo-
nents, leads to optimal h-convergence rates for the velocity components. Suboptimal results
in the vorticity, as was to be expected, were found. The h-convergence rates for the pressure
were much better than expected. Further experiments with least-squares spectral element
methods will, we hope, clarify whether this phenomenon is model problem dependent or a
general trend for higher order methods. The comparison with the Galerkin spectral element
method revealed that the method is equally as accurate as the Galerkin formulation and
even superior when the other boundary conditions are employed. The overdetermined but
consistent boundary condition also yields optimal accurate results. The p-convergence rates
of the least-squares spectral element formulation of the Stokes problem revealed that the
choice of the boundary condition has no effect on the exponential p-convergence behaviour.
Moreover, the results revealed that the use of the inflow and overdetermined boundary con-
dition leads to a pressure accuracy which is slightly better than the accuracy of the velocity
components for high spectral element orders. When the pressure was not prescribed on the
boundary, the accuracy of the velocity components was one order more accurate than the
pressure and vorticity.

Since we did not experience any dramatic loss of accuracy when h- or p-refinement
was applied in any of our test cases, we believe that spectral element methods based on
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least-squares formulations might be good candidates for use in developing new hp-adaptive
strategies for future generation large-scale (Navier–Stokes) solvers.
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